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Abstract. Blockchain technology has the potential to disrupt applications beyond cryptocur-
rencies. This work applies the concepts of blockchain technology to swarm robotics appli-
cations. Swarm robots typically operate in a distributed fashion, wherein the collaboration
and coordination between the robots are essential to accomplishing the application goals.
However, robot swarms may experience network partitions either due to navigational and
communication challenges or in order to perform certain tasks efficiently. We propose a
novel protocol, SwarmDAG, that enables the maintenance of a distributed ledger based on
the concept of extended virtual synchrony while managing and tolerating network partitions.

1. Introduction

Blockchain technology has not only made a big impact on finance by enabling cryptocurrencies,
it has emerged as a fundamental tool for building many types of decentralized applications that
can benefit from having a shared, immutable, distributed ledger. This work demonstrates how
such a distributed ledger could be built for swarm robotics applications.

Swarm robotics applications consist of collections of robots that coordinate and collaborate
with one other through a set of control algorithms in a connected network, typically operating
with limited global knowledge.1 In real-world application settings, swarm robots are subject to
network partitions due to navigational and connectivity challenges, and such partitions can disrupt
the application flow and reduce the effectiveness of the robotic agents. As a result, partition
tolerance and the ability to adapt to network partitions are important requirements for swarm
robotics applications.

The CAP theorem specifies that a distributed system must achieve a trade-off among the
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following three properties: consistency, availability, and partition tolerance.2 In the case of swarm
robotics, partition tolerance becomes a prominent requirement to achieve desired application
functionality where swarms have the potential to seamlessly partition and merge their network.
In this work, we focus on ensuring the availability of swarm robotics applications running over
a distributed ledger. However, per the CAP theorem, ensuring partition tolerance implies that
swarm robotics applications cannot maintain consistency without sacrificing availability. Swarms
can achieve eventual consistency if the partitions merge together within a reasonable timespan
for the application of interest and follow a protocol for reconciling any conflicts as per the model
presented by BASE.3

Partition tolerance in swarm robotics is not well-studied in the literature. Existing approaches
for partition tolerance in robotics applications rely on distributed control theory or consensus-
based on graph theory.4–7 A particularly interesting consistency concept for robotics applications
that experience network partitions is Extended Virtual Synchrony (EVS),8 which we adopt in
this work. Rather than trying to guarantee a globally consistent state for all nodes in the system,
EVS provides agreement only between nodes that can exchange information with each other.
EVS introduces the concept of membership view, which defines a set of nodes that are connected
to each other and an identifier for that set. For a certain view identifier (ID), all nodes in the
membership view agree on the content of the set. For a membership view ID, consensus is
provided only among the nodes in the view set, and there are no guarantees regarding ordering of
messages exchanged in different membership views. For nodes or applications that transition
together between multiple membership views, view IDs are ordered with respect to message IDs.

One immediate benefit of using EVS in swarm robotics is that, in the presence of partitions,
all partitions can continue updating their progress rather than only one partition continuing (often
the partition with a majority of the members) as per the semantics provided by global ordering
protocols such as Paxos and Raft.9, 10 The drawback is that when different network partitions
merge, in the absence of a global agreement of the updates, the different network components may
be in different states that may be conflicting. We believe this better reflects actual environments,
and swarm robotics applications need to handle conflicting actions that may have occurred across
partitions. Our approach of using a DAG structured distributed ledger based on EVS provides
such a mechanism for de-confliction.

In this work, we propose the SwarmDAG protocol, an approach based on a Directed Acyclic
Graph (DAG) structured distributed ledger to enable robot swarms to achieve eventual consistency.
SwarmDAG consists of membership management and a distributed ledger to handle network
partitions. While our work is inspired by prior work on DAG-based distributed ledger protocols
such as IOTA and Hashgraph,11, 12 these protocols are not designed for swarm robotics where
partitions may be frequent and do not provide explicit support for an EVS-based consistency
model. To the best of our knowledge, SwarmDAG is the first partition tolerant distributed ledger
technology for swarm robotics applications that supports the EVS consistency model.

2. SwarmDAG: A Partition Tolerant Distributed Ledger

The SwarmDAG protocol is a system-level architecture which provides an EVS-based, eventually
consistent, and DAG-based distributed ledger across a robot swarm which encounters frequent
partitions. The main idea of SwarmDAG is to respond to partitions by spawning new network
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Fig. 1. Example SwarmDAG ledger when network partitions occur and merge. Details of the
sequence of events leading up to this example ledger is described in Section 2.1

instances with corresponding ledgers. The new ledgers that are created become forks of the
original ledger before the partitioning occurred. When the partitions merge back together,
SwarmDAG provides a protocol to reconstruct the merged ledger while maintaining the fork
point. Thus, the resulting ledger structure is a DAG. An example of this fork and merge process
can be seen in time slots 0 to 4 in Figure 1. While a DAG ledger structure is always the result,
SwarmDAG is flexible in that it allows the ledger structure within a partition instance to be either
a DAG or a blockchain (i.e., a linear ledger). In addition, any consensus protocol within a single
partition instance can be used, such as a classical Byzantine Fault-Tolerant (BFT) consensus
protocol. Because any ledger consensus protocol can be used within a single partition, the
SwarmDAG protocol is intended to be implementable using existing distributed ledger consensus
platforms such as Tendermint or Hyperledger.13, 14 The novelty of SwarmDAG is that it provides a
system-level approach to handling partitions while providing an EVS-based eventually consistent
distributed ledger.

2.1. SwarmDAG Ledger Overview—The SwarmDAG protocol assumes the members of an
entire swarm S is known. Figure 1 illustrates an example SwarmDAG ledger when a swarm of 20
robots (i.e., |S|= 20) experiences several network partitions and merges. Each transaction on the
SwarmDAG ledger stores state information updates. We assume that one or more transactions
are placed into a block, and that a sequence of blocks is created within each partition.

To better understand the SwarmDAG protocol, we will explain in detail the sequence of
events leading to the example SwarmDAG ledger illustrated in Figure 1. A SwarmDAG genesis
block a1 is first created by partition PA. Partition PA includes the entire swarm (i.e., swarm
S = PA). Blocks appended to the ledger at any time will have the ID of the partition in which
the block occurred. In Figure 1, each block is labeled by a single letter which represents the
partition ID with a subscript denoting the transaction number increasing in chronological order
(similar to the notion of “height” in blockchains). For illustrative purposes, Figure 1 is broken
into time slots, although it is important to note that SwarmDAG does not use time as a means
of determining the order of transactions or blocks on the DAG ledger. At t = 2, the network
splits into two partitions, PB and PC, each with 10 members. The SwarmDAG protocol spawns
a new network and corresponding distributed ledger (i.e., resulting in two new genesis blocks)
for each new partition. The two partitions continue in parallel with blocks b1 and c1 as the
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first blocks of PB and PC, respectively. These new parallel ledgers will continue to grow during
the duration of the network split. When the two partitions merge at slot t = 4, a reconciliation
process takes place in which the now merged partitions (PB and PC merge to recreate partition
PA) distribute via a gossip-based protocol only the finalized transactions on their independent
ledgers and reconstruct the ledger from slots t = 0 to t = 3 to now have a fork after transaction a2.
We use the term finalized for blocks that are officially appended to the SwarmDAG ledger, and
the term confirmed for blocks that are appended to a ledger within a partition network instance.
At this point, the ledger manifests its DAG structure. Since PB and PC spawned new networks,
their ledgers cannot simply merge together. Thus, each robot in the swarm will manage their
ledgers in a local database which only holds the SwarmDAG finalized blocks. Lastly, a new
network and ledger is spawned with merge block a4 serving as the first block of the recreated PA

concluding the merge process. For the protocol to operate as explained, a method for managing
partition membership updates regularly is needed. The method used in SwarmDAG is explained
in detail in Section 2.2. However, readers can assume that the swarm is able to adequately capture
partition changes for the rest of this section.

The ledger in Figure 1 progresses from slot t = 5 and onward in a fashion similar to the
first 5 slots. However, slots 5 and onward show several special cases which SwarmDAG may
encounter when the underlying consensus protocol within a partition is a classical BFT 2/3
consensus protocol. A network split occurs in t = 6, but transactions a5 and a6 still become
confirmed with respect to PA. This is because this network splits into partitions of size 5 and
15, and the partition of size 15 can still confirm (not finalize) blocks a5 and a6 since the leftover
members is larger than the 2/3 threshold. Eventually, however, the partition of size 15 will
encounter a partition membership update and realize that a network split has occurred leading
to the formation of partition PE . In this example, a network partition was detected two blocks
after it occurred, and PE decides blocks a5 and a6 were not finalized (i.e., because it cannot
be guaranteed that PD indeed saw those two blocks). To this end, SwarmDAG must require a
k-block orphaning policy where, at any point in time, the last k blocks should not be considered
final, even though the underlying consensus protocol has deemed the block confirmed, to prevent
conflicts across partitions. When properly designed, this k-block orphan rule will minimize the
possible conflicts robot swarms will face. The number of blocks orphaned should be chosen
based on the transaction rate of the network and the expected time in which partition membership
changes can be detected in the network. In this example, PD did not orphan any blocks after
detecting a membership change because the 5 robots were unable to confirm any new blocks to
the PA ledger when the split occurred. Lastly, a fork is illustrated in t = 9 for PE to illustrate a
DAG ledger structure can be used within partitions.

2.2. Membership Management Service (MMS)—In the SwarmDAG protocol, every transac-
tion must include the membership view ID of the partition in which the transaction was made
to aid in block finalization upon splits and mergers. To support this, the SwarmDAG protocol
includes the Membership Management Service (MMS), which is a service that shall run on each
robot.

At its core, the MMS uses the Totem Membership Protocol but with slight modifications.15

To control the network traffic and rate of partition membership changes of the Totem Membership
Protocol, all nodes will stay in Totem’s Gather State until a periodic Membership Update (MU)
event occurs. When these periodic MU events occur, all partitions in the network will move
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Fig. 2. Partition-Aware Transaction Verification (PTV) Policy.

to Totem’s Commit State. At all times, each robot node will maintain a peer list and partition
membership list. The peer list includes a list of nodes within communication range which is
updated regularly based on any broadcast packets received by robots within communication range.
Broadcast packets are received as a part of the background gossip messages of the underlying
distributed ledger consensus protocol used as well as gossip messages generated by the MMS.
The MMS gossip messages include a robot’s unique identifier as well as its peer list. At regular
periods, TMU , these gossiped peer lists will be processed to determine partition MU events. TMU

should be chosen long enough to not overload the network but short enough to capture the
expected interval of partition changes in the swarm network. A partition requires a minimum of
two robots, so any lone robot nodes are addressed by its identifier. Lastly, the MMS provides
applications access to the current partition membership to allow intelligent decisions on when to
submit particular transactions onto the network.

3. Partition-Aware Transaction Verification (PTV) Policy

Applications can use the SwarmDAG ledger as a voting platform to reach consensus on items
such as task allocation and decision making as proposed in Castelló Ferrer, “The Blockchain:
A New Framework for Robotic Swarm Systems” (2016).16 However, it is important to note
consensus on these items is eventual in the face of partitions. For example, when a collaborative
task is proposed by a robot in a partition with insufficient robots, the task cannot be accepted and
consensus has not yet been reached. Partitions containing a sufficient number of robots need to
merge with the partition of the proposing robot for the swarm to come to consensus. Thus, it is
important to have a Partition-Aware Transaction Verification (PTV) policy to aid in optimizing
consensus time and reducing possible conflicts. The SwarmDAG PTV policy allows applications
to decide when to queue transactions when insufficient robots are available. The SwarmDAG
PTV flow chart is illustrated in Figure 2.

4. Target Properties and Ongoing Work

As we have noted above informally, the aim of the SwarmDAG protocol is to provide an EVS-
based eventually consistent distributed DAG ledger for a robot swarm. More precisely, what we
seek to provide is the following guarantee: at any moment in time, a given node i in the swarm
S will contain a subset of the global DAG-ledger (the union of DAG-ledgers contained in all
nodes across all partitions in the swarm) such that a) it includes all finalized blocks produced
in the partitions that node i was ever part of, and b) it includes all finalized blocks present in
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the DAG-ledger of all nodes j that i ever encountered in the same partition as itself, right up to
the last time it encountered them. This guarantee can be proven to hold through an inductive
argument, which we will present formally in future work.

In future work, we intend to investigate the tradeoff of choosing the membership update
period TMU as well as the tradeoffs when designing a k-block orphaning policy when network
splits occur. To do so, we are currently evaluating the SwarmDAG protocol by implementing it
using various distributed ledger consensus platforms (e.g., IOTA, Tendermint) for each partition
network instance.

5. Conclusion

Swarm robotics applications are susceptible to network partitions, which can make it challenging
to satisfy desired application goals such as maintaining a distributed ledger for decentralized
applications. We have presented here a novel protocol called SwarmDAG which manages a
distributed ledger to provide extended virtual synchrony based eventual consensus while handling
partitions through a membership management protocol.
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