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A Probabilistic Analysis of the Nxt Forging
Algorithm

Serguei Popov∗†

Abstract. We discuss the forging algorithm of Nxt from a probabilistic point of view, and
obtain explicit formulas and estimates for several important quantities, such as the probability
that an account generates a block, the length of the longest sequence of consecutive blocks
generated by one account, and the probability that one concurrent blockchain wins over an-
other one. Also, we discuss some attack vectors related to splitting an account into many
smaller ones.

1. Introduction

In the past three years there was a burst of popularity of Proof-of-Stake (PoS) cryptocurrencies,
that used a different algorithm (from Proof-of-Work) for choosing the block creators. Unlike
the Proof-of-Work (PoW) based cryptocurrencies (such as Bitcoin), where miners must solve
complicated cryptographical puzzles in order to be able to create blocks and be rewarded for it
(besides the transaction fees, there is usually a specific block reward that the successful miner
takes), in PoS-based cryptocurrencies the creator of the next block is chosen in a deterministic
(pseudo-random) way, and the chance that an account is chosen depends on its wealth (the stake).
A note on terminology: in PoS cryptocurrencies the blocks are usually forged (in the blacksmith
sense of this word), or minted. Also, usually all the coins are created in the beginning and the
total number of coins never changes afterwards (although, as mentioned below, there are some
other versions of PoS where new coins can be created). Therefore, in the basic version of PoS
there are no block rewards as e.g. in Bitcoin; so, the forgers take only the transaction fees.

The main goal of this paper is to perform a probabilistic analysis of the block generation
process of pure PoS cryptocurrencies, using as an example the Nxt protocol.1 By “pure PoS”
we mean that the choice of account that has the right to generate the next block is based on the
number of coins in the account; the more wealthy the account is, the bigger is the probability that
it will be able to generate the next block and get the corresponding transaction fees. Usually, one
assumes that this probability should be exactly proportional to the account’s balance, although
we shall see that it is not quite the case for the Nxt. Also, we stress that most of the analysis in
this paper is not Nxt-specific and can be applied in the broader context of PoS-cryptocurrencies
with pseudo-random choice of the creator of the next block.
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There are also other PoS-protocols with conceptually different implementations; for example,
the forging probability may depend also on time the coins were in the account without being
transferred (the so-called coin-age); also, there still may be some kind of block rewards for the
forgers. In this paper, however, we concentrate on the “pure-PoS” algorithm implemented in the
Nxt.

Some concerns were raised about the general security of the PoS-algorithms, being the
“nothing-at-stake” attack the most famous of them. We do not discuss this and some other (such
as the “history attack”) attacks in this paper, and refer instead to a remarkable series of papers
published by Consensus Research,2 see.8–11 Also, it is worth mentioning that Nxt was never
successfully attacked during its three years of existence.3

We assume that the reader is familiar with the basic cryptocurrency-related concepts. In the
next section we define a probabilistic model which effectively describes the Nxt’s algorithm for
choosing the next forger. In Section 3 we calculate the probability that a given account generates
the next block, and discuss how this probability is affected when the account is split into several
smaller ones. In Section 4 we study how many blocks in a row can be generated by an account
over a long time period. (As a general principle, it is not desirable that one entity could be able
to generate many blocks in a row, since cryptocurrencies are meant to be decentralised.) In
Section 5 we analyse the probability that a chain forged privately by an attacker is “better” than
the legitimate chain (this does not exactly correspond to the current Nxt consensus algorithm, but
nevertheless gives some insight about probabilities involved). In Section 6 we analyse another
attack strategy (“branching process attack”) that amounts to splitting the account in many small
parts, and then trying to manipulate the forging process by choosing which small accounts will
forge, and which will not.

2. The Forging Algorithm

First of all, we assume that the time is discrete (say, measured in minutes), so that time intervals
between the consecutive blocks are one minute long. This is not the case for the Nxt forging
algorithm which is currently in use; however, even for the current realization the sequence of
forging account is determined in the same way (only the time intervals are random). There are
plans to pass to the one-block-per-minute regime in a future realization of the Nxt protocol, but,
as far as the author knows, this is still being discussed.

Assume that there are N forging accounts at a given (discrete) time, B1, . . . ,BN are the
corresponding balances, and we denote by

bk =
Bk

B1 + · · ·+BN
, k = 1, . . . ,N

the proportion of total forging power that the kth account has. In Nxt, the total number of
coins is fixed (those who forge blocks receive only transaction fees), but some nodes may be
offline, which effectively means that not all coins are forging. We, however, make a simplifying
assumption that all accounts are active; this is not so restrictive since (as we will see below)
the forging probabilities only depend on the relative stake of the account with respect to the
total active stake. Then, to determine which account will generate the next block, we take i.i.d.
random variables U1, . . . ,UN with uniform distribution on interval (0,1), and the account which
maximizes bk/Uk generates the block; i.e., the label k0 of the generating account is determined
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by

k0 = argmax
j∈{1,...,N}

b j

U j
= argmin

j∈{1,...,N}

U j

b j
. (1)

We refer to the quantity bk/Uk as the weight of the kth account, and to bk0/Uk0 as the weight
of the block, i.e., we choose the account with the maximal weight (or, equivalently, with the
minimal inverse weight) for the forging. This procedure is called the main algorithm (because it
is actually implemented in Nxt at this time), or the U-algorithm (because the inverse weights
have uniform distribution).

As a general rule, the probability that an account generates a block is meant to be proportional
to its effective balance, but, in fact, this is only approximately true (as we shall see in Section 3).
For comparison, we consider also the following rule of choosing the generating account: instead
of (1), we use

k0 = argmin
j∈{1,...,N}

| lnU j|
b j

. (2)

The corresponding algorithm is referred to as the Exp-algorithm (since the inverse weights now
have exponential probability distribution).

Important note: for all the calculations in this article, we assume that all accounts are forging
and all balances are effective (so that B1 + · · ·+BN equals the total amount of NXT in existence).
In the real situation when only the proportion α of all money is forging (if the k0

th account
from (1) does not forge because it is offline or for any other reason, then the account with the
seconds largest weight can forge that block, and so on), one can adjust the formulas in the
following way. Making a reasonable assumption that all money of the attacker is forging and
his/her (relative) stake is b′, all the calculations in this article are valid with b = α−1b′.

Another important note: The Nxt forging algorithm is, in fact, pseudo-random: if we know
the forger of the previous block and all account balances, then the forger of the next block is
known too (provided it is online); this observation will be important for the discussion in Section 6.
This is because the above “random” variables U1, . . . ,UN in reality are obtained deterministically
as an application of a hashing function to the current block’s generating signature and the
account’s public keys (no further pseudo-random number generators are involved). Nevertheless,
it is still reasonable to assume “complete randomness” as a good approximation of the reality.

3. Probability of Block Generation

Observe that (see e.g. Example 2a of Section 10.2.1 of Ross)15 the random variable | lnU j|/b j has
exponential distribution with rate b j. By (2), the inverse weight of the generated block is also an
exponential random variable with rate b1 + · · ·+bN = 1 (cf. (5.6) of Ross),16 and the probability
that kth account generates the block is exactly bk (this follows e.g. from (5.5) of Ross).16

However, for the U-algorithm the calculation in the general case is not so easy. We concentrate
on the following situation, which seems to be critical for assessing the security of the system:
N is large, the accounts 2, . . . ,N belong to “poor honest guys” (so b2, . . . ,bN are small), and the
account 1 belongs to a “attacker”, who is not necessarily poor (i.e., b := b1 is at least of the same
order as max(b2, . . . ,bN)).
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b

f(b)

Fig. 1. The plot of f (b)

We first calculate the probability distribution of the largest weight among the good guys: for
x�maxk≥2 bk let us write

P
[

max
k≥2

bk

Uk
< x
]
= ∏

k≥2
P
[
Uk >

bk

x

]
= ∏

k≥2

(
1− bk

x

)
= exp ∑

k≥2
ln
(

1− bk

x

)
≈ e−

1−b
x , (3)

since ln(1− y)∼−y as y→ 0 and b2 + · · ·+bN = 1−b. We calculate now the probability f (b)
that the attacker generates the block, in the following way. Let Y be a random variable with
distribution (3) and independent of U1, and we write (conditioning on U1)

f (b) := P
[ b

U1
> Y

]
=
∫ 1

0
P
[
Y <

b
z

]
dz

=
∫ 1

0
e−

1−b
b z dz

=
b

1−b

(
1− e−

1−b
b

)
. (4)

One can observe that f (b)> b for all b∈ (0,1) (see also Fig. 1), and (using the Taylor expansion)
f (b) = b+b2 +O(b3) as b→ 0.

Let us remark also that, since f (b)∼ b as b→ 0 and using a calculation similar to (3), if all
relative balances are small, the situation very much resembles that under the Exp-algorithm (see
also (9) below). Thus, although the U-algorithm does incentivize the users to store the money
together (which, in principle, could lead to some centralization), the difference is usually not
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very significant (even if the account is split to many small parts) unless the account is really
wealthy. Also, since the U-algorithm is computationally faster (no need to calculate logarithms),
the author’s opinion is that it is adequate enough for a PoS-currency such as Nxt.

3.1. Effect of Account Splitting on the Probability of Generating a Block—Here we examine
the situation when an owner of an account splits it into two (or even several) parts, and show that,
in general, this strategy is not favorable to the owner (that is, the probability that one of his/her
accounts is chosen for block generation does not increase).

First of all, as discussed in the beginning of Section 3, for the Exp-algorithm, the probability
that one of the new (i.e., obtained after the splitting) accounts will generate the next block does
not change at all. Indeed, this probability is exactly the proportion of the total balance owned by
the account, and any splitting does not change this proportion (i.e., all the new accounts forge
exactly as the old one).

Now, let us consider the case of the U-algorithm. We shall prove that splitting is always
unfavorable for a Nxt holder. Namely, we can prove the following result:

Theorem 3.1. Assume that a person or entity controls a certain number of Nxt accounts, and
let p be the probability of generating the next block (i.e., the account that forges the block belongs
to this person or entity). Suppose now that one of these accounts is split into two parts (while the
balances of all other accounts stay intact), and let p′ be the probability of block generation in
this new situation. Then p′ < p.

By induction, one easily obtains the following:

Corollary 3.1.1. Under the U-algorithm, in order to maximize the probability of generating the
next block, all NXT that one controls should be concentrated in only one account.

[Proof of Theorem 3.1.] Let b1, . . . ,b` be the relative balances of accounts controlled by
that person or entity, and let b`+1, . . . ,bn be the balances of the other active accounts. Assume
without restriction of generality that the first account is split into two parts with (positive) relative
balances b′1,b

′′
1 (so that b′1 +b′′1 = b1).

Let U1, . . . ,Un, U ′1, U ′′1 be i.i.d. uniform[0,1] random variables. Let

Y = min
j=1,...,`

U j

b j
,

Y ′ = min
(U ′1

b′1
,
U ′′1
b′′1

, min
j=2,...,`

U j

b j

)
,

Z = min
j=`+1,...,n

U j

b j
.

Let us denote x+ := max(0,x) for x ∈ R. Analogously e.g. to (3), we have for t > 0

P[Y > t] = ∏
j=1,...,`

(1−b jt)+,

P[Y ′ > t] = (1−b′1t)+(1−b′′1t)+ ∏
j=2,...,`

(1−b jt)+,

and a similar formula holds for Z; we, however, do not need the explicit form of the distribution
function of Z, so we just denote this function by ζ .
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Observe that for 0 < t < min
( 1

b′1
, 1

b′′1

)
it holds that

(1−b′1t)(1−b′′1t) = 1−b1t +b′1b′′1t2

> 1−b1t,

so
(1−b′1t)+(1−b′′1t)+ ≥ (1−b1t)+

for all t ≥ 0 (if the left-hand side is equal to 0, then so is the right-hand side), and, moreover, the
inequality is strict in the interval

(
0,min

( 1
b′1
, 1

b′′1

))
.

Then, conditioning on Z, we obtain

1− p = P[Y > Z]

=
∫

∞

0
∏

j=1,...,`
(1−b jt)+ dζ (t)

=
∫

∞

0
(1−b1t)+ ∏

j=2,...,`
(1−b jt)+ dζ (t)

<
∫

∞

0
(1−b′1t)+(1−b′′1t)+ ∏

j=2,...,`
(1−b jt)+ dζ (t)

= P[Y ′ > Z]

= 1− p′,

and this concludes the proof of the theorem.
One should observe, however, that the disadvantage of splitting under the U-algorithm is not

very significant. For example, if one person controls 5% of total active balance and has only one
account, then, according to (4), the forging probability is approximately 0.0526. For any splitting,
this probability cannot fall below 0.05 (this value corresponds to the the extreme situation when
all this money is distributed between many small accounts).

4. Longest Run

In general, a situation when only one entity is able to forge many blocks in a row is considered
undesirable in crypto world. Besides the conceptual issue of centralization, this can lead e.g. to the
following kind of attack: the attackers spends in the main chain and waits for some confirmations,
and then broadcasts a (long) sidechain that would be accepted by the nodes as the main one (the
point is that the attacker can build this sidechain alone, without help of other forgers). Therefore,
in this section we analyse how many blocks in a row can be typically generated by a given
account over a long period n of time. We make a simplifying assumption that the situation is
“static”: there are no transactions (so that the effective balances are equal to full balances and do
not change over time).

So, assume that the probability that an account generates the next block is p (see in Section 3
an explanation about how p can be calculated). It is enough to consider the following question:
let Rn be the maximal number of consecutive 1’s in the sequence of n Bernoulli trials with success
probability p; what can be said about the properties of the random variable Rn?

The probability distribution of Rn has no tractable closed form, but is nevertheless quite
well studied, see e.g. Schilling.17 The following results are taken from Gordon, Schilling, and
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Waterman:14 we have

ERn = log1/p qn+
γ

ln1/p
− 1

2
+ r1(n)+ ε1(n), (5)

VarRn =
π2

6ln2 1/p
+

1
12

+ r2(n)+ ε2(n), (6)

where q = 1− p, γ ≈ 0.577 . . . is the Euler-Mascheroni constant, ε1,2(n)→ 0 as n→ ∞, and
r1,2(n) are uniformly bounded in n and very small (so, in practice, r1,2 and ε1,2 can be neglected).

In the same work, one can also find results on the distribution itself. Let Γp be a random
variable with a Gumbel-type distribution: for y ∈ R

P[Γp ≤ y] = exp(−py+1).

Then, for x = 0,1,2, . . . it holds that

P[Rn = x]≈ P[x− log1/p qn < Γp ≤ x+1− log1/p qn], (7)

with the error decreasing to 0 as n→ ∞. So, in particular, one can obtain that

P[Rn ≥ x]≈ 1− exp(−px+1qn)

≈ px+1qn (8)

if px+1qn is small (the last approximation follows from the Taylor expansion for the exponent).
For example, consider the situation when one account has 10% of all forging power, and the

others are relatively small. Then, according to (4), the probability that this account generates a
block is p≈ 0.111125. Take n = 1000000, then,4 according to (5)–(7), we have

ERn ≈ 6.00273,

VarRn ≈ 0.424,

P[Rn ≥ 7]≈ 0.009 .

Next, consider a situation where one account controls considerably more coins, say, 30% of the
total. Then we have p≈ 0.387012, and, according to the previous discussion,

ERn ≈ 11.15793,

VarRn ≈ 1.21812,

P[Rn ≥ 13]≈ 0.03348 .

That is, we see that the maximal number of blocks in a row that even a very rich account can
forge usually cannot be dramatically big. See, however, the discussion in Section 6, where more
elaborate strategies for forging many blocks in a row are considered.

5. “Goodness” of a Blockchain and Concurrent Blockchains

In this section we consider the following attack scenario: account 1 (the “attacker”, with balance b)
temporarily disconnects from the network and forges its own blockchain; (s)he then reconnects
hoping that his/her blockchain would be “better” than the blockchain produced by the “good”
part of the network.
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Now, we need to define what it means for one chain to be “better” than another. Here, we
consider the following rule: if there are two chains of the same length, the one that has smaller
sum of inverse weights wins. Of course, other rules may be considered, which, hopefully, can be
analysed in an analogous way.5

First, let us look at the distribution of the inverse weight of a block. In the case of the
Exp-algorithm, everything is simple: as observed in Section 3, it has the exponential distribution
with rate 1. This readily implies that the expectation of the sum of weights of n blocks equals n.

As for the U-algorithm, we begin by considering the situation when all relative balances are
small. Analogously to (3), W being the weight of the block, for x� (maxk bk)

−1 we calculate

P
[ 1

W
> x
]
= P

[
max

k

bk

Uk
<

1
x

]
= ∏

k
P
[
Uk > xbk

]
= ∏

k
(1− xbk)

= exp∑
k

ln(1− xbk)

≈ e−x, (9)

so also in this case the distribution of the inverse weight is approximately exponential with rate 1.
We consider now the situation when all balances except the first one are small, and b := b1

need not be small. For the case of the U-algorithm, similarly to (9) we obtain for x ∈ (0,1/b)

P
[ 1

W
> x
]
= ∏

k
(1− xbk)

= (1−bx)exp ∑
k≥2

ln(1− xbk)

≈ (1−bx)e−(1−b)x, (10)

so

E
1

W
≈
∫ 1/b

0
(1−bx)e−(1−b)x dx

=
be−

1−b
b +1−2b
(1−b)2 . (11)

One can observe (see Fig. 2) that the right-hand side of (11) is strictly between 1/2 and 1 for
b ∈ (0,1).

Now, we start analysing the attack scenario when the attacker, with balance b, temporarily
disconnects from the network and forges its own blockchain. While the account 1 is disconnected,
the “good” part of the network produces blocks with weights having exponential distribution
with rate 1−b, and thus each inverse weight has expected value 1

1−b .
Let X1,X2,X3, . . . be the inverse weights of the blocks produced by the “good part” of the

network (after the attacker disconnects), and we denote by Y1,Y2,Y3, . . . the inverse weights of the
blocks produced by the attacker. We are interested in controlling the probability of the following
event (which means that the blockchain produced by the attacker has smaller sum of inverse
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10

1

b

0.5

Fig. 2. Expectation of the inverse weight (as a function of b)

weights and therefore wins)

Hm = {X1 + · · ·+Xm−Y1−·· ·−Ym ≥ 0}

for a “reasonably large” m (e.g., m = 10 or so). If the probability of Hm is small, this means that
the attacker unlikely will succeed attacking the network; on the other hand, if this probability is
not small, then the system should be able to fence off the attack by other means, which we shall
not discuss in this note.

We obtain an upper bound on the probability of the event Hm using Chebyshev’s inequality:
since the random variables are i.i.d., we write for any fixed t > 0

P[Hm] = P[X1 + · · ·+Xm−Y1−·· ·−Ym ≥ 0]

= P
[

exp
(
t(X1 + · · ·+Xm−Y1−·· ·−Ym)

)
≥ 1
]

≤ Eexp
(
t(X1 + · · ·+Xm−Y1−·· ·−Ym)

)
=
(
Eet(X1−Y1)

)m
.

Since the above is valid for all t > 0, we have

P[Hm]≤ δ
m, where δ = inf

t>0
Eet(X1−Y1). (12)

It is important to observe that this bound is nontrivial (i.e., δ < 1) only in the case EX1 < EY1.
For the U-algorithm, X1 is exponentially distributed with rate 1− b, and Y1 has uniform

(0,b−1) distribution. So, the condition EX1 < EY1 is equivalent to (1−b)−1 < (2b)−1, that is,
b < 1/3. Then, for b < 1/3, the parameter δ from (12) is determined by

δ = δ (b) = b(1−b) inf
0<t<1−b

1− e−t/b

t(1−b− t)
(13)

(see the plot of δ (b) on Fig. 3), so we have

P[Hm]≤ δ (b)m. (14)
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0

1

b1/3 1/2

δ(b)

4b(1− b)

Fig. 3. The comparison of the rate functions δ (b) (for the U-algorithm) and 4b(1−b) (for
the Exp-algorithm)

Let us mention that δ (b) is usually called the rate function, since it determines the rate of the
exponential decay of the large deviation probabilities. For example, we have δ (0.1)≈ 0.439. We
have, however, δ (0.3)≈ 0.991, which means that one has to take very large m in order to make
the right-hand side of (14) small in this case.

For the Exp-algorithm, the attacker would produce blocks with inverse weights having
exponential distribution with rate b, so each inverse weight has expected value 1

b . Similarly to
the above, one obtains that the condition EX1 < EY1 is equivalent to b < 1/2, and

P[Hm]≤
(
4b(1−b)

)m (15)

(that is, δ can be explicitly calculated in this case and equals 4b(1−b); observe that 4b(1−b)< 1
for b < 1/2). As we see on Fig. 3, it holds that δ (b)> 4b(1−b) for b∈ (0,1/3); that is, the large
deviation probabilities of the “unfavorable” event decay more rapidly for the Exp-algorithm.

6. More on Account Splitting

In this section we analyze the following attack strategy: if the attacker wins the forging lottery at
the current step but owns several accounts with inverse weights less than all the accounts of good
guys (i.e., these accounts of the attacker are first in the queue), then (s)he chooses which of his
accounts will forge. Effectively, that means that (s)he has several independent tries for choosing
the hash of the block, and so (s)he may be able to manipulate the lottery in his/her favor.6

We assume also that the network tries to protect itself from this kind of behaviour, in the
following way: if an account was expected to forge a block (e.g., was in the beginning of the
forging queue) but did not forge, it loses the right to forge for some period. As far as the author
knows, the Nxt’s creator originally had plans to introduce this kind of rule at some stage, but,
apparently, this idea was then abandoned.

Of course, following the above strategy requires that the balance of the winning accounts
should be small (because of the ban for non-forging), but, as we shall see below, splitting into
small parts is exactly the right strategy for maximizing the number of the best accounts in the
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queue.
First of all, let us estimate the probability that in the sequence of accounts ordered by the

inverse weights, the first k0 ones belong to the same person or entity, who controls the proportion b
of all active balance. We will do the calculations for the case of the Exp-algorithm, since the
attacker would have to split his money between many (or at least several) accounts (because the
attacker’s goal is to have several accounts in front of the forging queue, not just one of them),
and, as observed in Section 3, in this situation both algorithms work essentially in the same way.

One obvious difficulty is that we do not know how exactly the money of the attacker is
distributed between his/her accounts. We assume that the balances of the other accounts (those
not belonging to the attacker) are relatively small. Also, let r be the minimal relative balance per
account which still can forge. There may be some rule that sets the minimum balance for which
the account is allowed to forge, or, in the absence of such a rule, r could be just the smallest
(indivisible) unit of the currency. When all the money in an account is distributed between many
accounts in such a way that each of these new accounts contains r units, we say that the (former)
account is split to dust. Let us show the following result:

Proposition 6.1. The best strategy for the attacker to maximize the probability that the best k0

accounts belong to him/her (under the Exp-algorithm), is to split his/her accounts to dust.

Recall that r is the minimal relative balance per account that is possible, and let us assume
that the attackers money is held in accounts with relative balances n1r, . . . ,n`r, where ` ≥ k0.
Denote also m = n1 + · · ·+n`, so that b = mr. Now, we make use of the elementary properties
of the exponential probability distribution discussed in the beginning of Section 3. Consider
i.i.d. exponential(r) random variables Y1, . . . ,Ym, and let Y(1) < .. . < Y(m) be the order statistics
(cf. Section 6.6 of15) of this sample (i.e., Y(1), . . . ,Y(m) are Y1, . . . ,Ym arranged in the increasing
order). Abbreviate s j = n1 + · · ·+n j, s0 := 0; the idea is that Ys j−1+1, . . . ,Ys j “correspond” to the
account worth n jr. Then, by (5.6) of16 we have that

Z j = min
i=s j−1,...,s j

Yi, j = 1, . . . , `

are independent exponential random variables with rates n1r, . . . ,n`r. So, with this construction,
the orders statistics of Z-variables form a subset of the order statistics of Y -variables; since the
inverse weights of the attacker’s accounts are the first k0 order statistics of Z1, . . . ,Z`, the claim
follows.

The above proposition leads to a surprisingly simple (approximate) upper bound for the
probability that the best k0 accounts belong to the attacker. Assume that all the accounts in the
network have the minimum relative balance r; then each account in the (ordered with respect
to the inverse weights) sequence has probability b to belong to the attacker. Since k0 should be
typically small compared to the total number of accounts, we may assume that the ownerships
of the first k0 accounts are roughly independent, and this means that the probability that all the
best k0 accounts belong to the attacker should not exceed bk0 .

Now, let us estimate the conditional probability p∗(b) that the attacker wins the forging lottery
on the next step, given (s)he was chosen to forge at the current step. The above analysis suggests
that the number of the best accounts in the queue that belong to the attacker can be approximated
by a geometric distribution with parameter b. Now, given that the attacker owns k best accounts
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Fig. 4. The plot of p∗(b) = 1− (1−b)2

1−b(1−b) .

in the queue, the probability that (s)he wins the next forging lottery is 1− (1−b)k (since there
are k independent trials at his disposal, and the probability that all will fail is (1−b)k).

Using the memoryless property of the geometric distribution (i.e., as one can easily verify,
P[X = k] = P[X = k+n | X ≥ n] if X has the geometric law) we have that, given that the winning
account belongs to the attacker, he also owns the next k−1 ones with probability (1−b)bk−1.
So,

p∗(b) =
∞

∑
k=1

(1−b)bk−1(1− (1−b)k)

= (1−b)
∞

∑
j=0

b j +(1−b)2
∞

∑
j=0

(b(1−b)) j

= 1− (1−b)2

1−b(1−b)
, (16)

see the plot of the above function on Fig. 4. The quantity p∗(b) is almost b for small stakes
(e.g., 0.1099 for b = 0.1), but dramatically increases for large b. For b = 0.9, for instance, this
probability becomes 0.989, i.e., the attacker will be able to forge typically around 90 blocks in a
row, instead of just 10.

Observe also that this calculation applies to the following strategy of the attacker: take the
first of his accounts that assures that (s)he forges on the next step (so that the attacker minimizes
the number of his accounts that will get banned). For this strategy, the attacker looks only one step
to the future. One can consider also a more advanced strategy: since the future is deterministic,
the attacker can try to calculate deeper into the future. We shall prove now that, under current
implementation of the forging algorithm, an attacker who owns more than 50% of all NXT can
eventually forge all the blocks (i.e., at some moment (s)he starts forging and never stops).

To prove this, we need first to recall the model of Galton-Watson branching process (cf.
e.g. Athreya, Ney for the general theory).13 In general, the Galton-Watson branching process
(Zk,k ≥ 0) with discrete time can be described in the following way. The random variable Zk

stands for the number of particles in the kth generation.7 Let p0, p1, p2, . . . ≥ 0 be such that
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p0+ p1+ p2+ · · ·= 1; the vector (pk,k≥ 0) thus defines a probability distribution on nonnegative
integers; we assume p1 < 1 to rule the degenerate case out. To form the (k+ 1)th generation,
each particle from the kth generation is independently substituted by a random number of other
particles; these random numbers are (independently) sampled from the probability distribution
(pk,k ≥ 0). One is then interested if the generations’ sizes grow to infinity (the process survives)
with positive probability, or it eventually happens that there are no particles at all starting from
some generation (the process dies out). Let µ = p1 + 2p2 + 3p3 + · · · be the mean offspring
number of a particle. The branching process is called subcritical if µ < 1, critical if µ = 1, and
supercritical if µ > 1. The fundamental result of the theory of branching processes is that the
process dies out if and only if µ ≤ 1, cf. e.g. Theorem 1 of Chapter 1 of Athreya, Ney.13

Now, the goal is to apply the above to our analysis. Assume that the block `0 +1 is about to
be forged. Let Z0 := 1, and let Z1 be the number of attacker’s accounts that are first in the queue
(i.e., win over any account not belonging to the attacker). Now, the attacker can choose which of
these Z1 accounts will forge. Let Z( j)

2 , j = 1, . . . ,Z1 be the number of attacker’s accounts that are
first in the queue for the block `0 +2, provided (s)he has chosen the jth account to forge at the
previous step. Let Z2 = Z(1)

2 + · · ·+Z(Z1)
2 . Then, we define Z3,Z4,Z5, . . . in an analogous way; it

is then elementary to see that (Zn,n≥ 0) is a Galton-Watson branching process with the offspring
law given by pk = (1−b)bk,k ≥ 0. The mean number of offspring

µ =
∞

∑
k=1

k(1−b)bk =
b

1−b

is strictly greater than 1 when b > 1
2 . Since a supercritical branching process survives with

positive probability (in fact, one can calculate that in this case the probability of survival equals
1−b

b ), the attacker can choose an infinite branch in the genealogical tree of the branching process,
and follow it.

The attacker can also use the same strategy with b ≤ 1
2 ; this, of course, will not permit

him to forge all the blocks, but there is still a possibility to increase the number of generated
blocks. Let us do the calculations. The probability generating function of the number of offspring
(corresponding to the geometric distribution) is

g(s) =
∞

∑
j=0

s j(1−b)b j =
1−b
1− sb

,

so an(b) := P[Zn = 0] satisfies the recursion

a1(b) = 1−b, an+1(b) =
1−b

1−ban(b)
,

and the mean lifetime h(b) of the branching process is

h(b) =
∞

∑
n=1

(1−an(b)).

Unfortunately, usually there is no closed form expression for the expected lifetime of a subcritical
branching process, but, as a general fact, it holds that h(b)∼ b as b→ 0 and h(b)→ ∞ as b→ 1

2 .
Since each streak of attacker’s blocks has the expected length b−1h(b) and the expected length of
each streak of good guy’s blocks is b−1, the attacker is able to forge the proportion h(b)

1+h(b) of all
blocks (see Fig. 5).
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Fig. 5. The plot of h(b)
1+h(b)

Observe that, for additional network protection against this type of attack, one can consider
the idea to have a lower limit for forging, i.e., an account that has less than some fixed amount
cannot forge at all.

7. Conclusions

In this paper we presented an analysis of a model of a “pure-PoS” algorithm for building a
blockchain; our model is very closely related to the forging algorithm implemented in the Nxt
cryptocurrency. We consider two versions of the algorithm for choosing the forger of the next
block: the “completely fair” (with respect to the probability of generating the next block) Exp-
algorithm, and the “slightly biased” U-algorithm (the latter is, however, implemented in the
Nxt). For both of them, we analyse also the effect (on that probability) of splitting one account’s
wealth into several accounts. In general, we found that splitting has no effect on the (total)
probability of block generation under the Exp-algorithm, and this probability always decreases
under the U-algorithm, so users are incentivized to store the money together. However, the
difference is usually not very significant (even if the account is split to many small parts) unless
the account has quite a lot of money. Then, we analyze an attack strategy when one account (or a
group of accounts) temporarily disconnects from the main network and tries to forge a “better”
blockchain than the one forged by other accounts, in the situation when one (malicious) entity
has proportion b of total amount of NXT, and the stakes of the others are relatively small. It
should be observed that the probability that the attacker forges a better chain of length m does
not tend to 0 (as m→ ∞) if the attacker has at least 1/3 of all active balances in the network in
the case of the U-algorithm (correspondingly, at least 1/2 in the case of the Exp-algorithm). We
also study the distribution of the longest run of blocks generated by one particular account (or
group of accounts), and consider the “branching process” attack where an attacker who owns
more than 50% of all NXT can eventually forge all the blocks (i.e., at some moment (s)he starts
forging and never stops).

As a general conclusion, the pure-PoS scheme turned out to be a very interesting model from
the mathematical point of view; one of the important features that makes the difference is the
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pseudo-random nature of the algorithm for choosing the next forger (differently of the “pure
randomness” of e.g. Bitcoin). This feature can be potentially very useful (if the next few forgers
are known, they may e.g. “pre-approve” transactions thus effectively reducing confirmation
time), but also generates some new attack vectors, as e.g. the “branching process” attack of
Section 6. Nevertheless, our analysis shows that this scheme remains sound, as long as there is
no dramatically large concentration of wealth (which is believed to be very unlikely to happen in
practice).
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