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RESEARCH ARTICLE

Ring Confidential Transactions
Shen Noether,∗Adam Mackenzie, the Monero Research Lab†

Abstract. This article introduces a method of hiding transaction amounts in the strongly
decentralized anonymous cryptocurrency Monero. Similar to Bitcoin, Monero is a cryptocur-
rency which is distributed through a proof-of-work “mining” process having no central party
or trusted setup. The original Monero protocol was based on CryptoNote, which uses ring
signatures and one-time keys to hide the destination and origin of transactions. Recently the
technique of using a commitment scheme to hide the amount of a transaction has been dis-
cussed and implemented by Bitcoin Core developer Gregory Maxwell. In this article, a new
type of ring signature, A Multilayered Linkable Spontaneous Anonymous Group signature
is described which allows one to include a Pedersen Commitment in a ring signature. This
construction results in a digital currency with hidden amounts, origins and destinations of
transactions with reasonable efficiency and verifiable, trustless coin generation. The author
would like to note that early drafts of this were publicized in the Monero Community and on
the #bitcoin-wizards IRC channel. Blockchain hashed drafts are available showing that
this work was started in Summer 2015, and completed in early October 2015.17 An eprint is
also available at http://eprint.iacr.org/2015/1098.

1. Introduction

Recall that in Bitcoin each transaction is signed by the owner of the coins being sent and these
signatures verify that the owner is allowed to send the coins. This is entirely analogous to the
signing of a check from your bank. In Bitcoin, value is created through a trustless “mining”
process, where users try to solve a mathematical problem, based on a hash function, in order
to receive coins. This coin generation phase is trustless in the sense that it requires no central
party to distribute value or guarantee its security, and anyone with a computer connected to the
internet may participate. In this paper we discuss a protocol allowing for coins to be transmitted
anonymously while retaining the trustless coin-generation process.

1.1. Previous Attempts: CryptoNote—CryptoNote and Ring Coin advance the digital signa-
ture part of Bitcoin by using “ring signatures” which were originally described by Rivest et al. as
a “digital signature that specifies a group of possible signers such that the verifier can’t tell which
member actually produced the signature.”22, 3, 20 The idea, therefore, is to have the origin pubkey
of a transaction hidden in a group of pubkeys all of which contain the same amount of coins, so
that no one can tell which user actually sent the coins.

The original CryptoNote protocol implements a slight modification of this to prevent double
spends.22 Namely, CryptoNote employs a “traceable ring signature,” which is a slight mod-
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ification of those described by Fujisaki and Suzuki.22, 10 This type of ring signature has the
benefit of preventing the owner of a coin from signing two different ring signatures with the
same pubkey without being noticed on the blockchain. The obvious reason for this is to prevent
“double-spending” which, in Bitcoin, refers to spending a coin twice. Ring coin uses a more
efficient linkable ring signature which is a very slight modification of the Linkable Spontaneous
Anonymous Group signatures described by Liu et al.3, 4, 11

One possible attack against the original CryptoNote or ring-coin protocol is blockchain
analysis based on the amounts sent in a given transaction.22, 4 For example, if an adversary
knows that .9 coins have been sent at a certain time, then they may be able to narrow down the
possibilities of the sender by looking for transactions containing .9 coins. This is somewhat
negated by the use of the one-time keys used in van Saberhangen’s CryptoNote protocol since
the sender can include a number of change addresses in a transaction, thus obfuscating the
amount which has been sent with a type of “knapsack mixing.”22 However this technique has
the downside that it can create a large amount of “dust” transactions on the blockchain, i.e.
transactions of small amounts that take up proportionately more space than their importance.
Additionally, the receiver of the coins may have to “sweep” all this dust when they want to send it,
possibly allowing for a smart adversary to keep track of which keys go together in some manner.
Furthermore, it is easy to establish an upper and lower bound on the amounts sent.

Another downside to the original CryptoNote set-up is that it requires a given pair of (P,A) of
pubkey P and amount A to be used in a ring signature with other pubkeys having the same amount.
For less common amounts, this means there may be a smaller number of potential pairs (P′,A′)
available on the blockchain with A′ = A to ring signature with. Thus, in the original CryptoNote
protocol, the potential anonymity set is perhaps smaller than may be desired. Analysis of the
above weaknesses is covered in Noether et al.12

1.2. CoinJoin and Coin Mixing—One benefit of using the above types of ring signatures
over other anonymizing techniques, such as CoinJoin or using coin mixing services, is that
they allow for “spontaneous” mixing. With CoinJoin or coin mixers, it is similarly possible to
hide the originator of a given transaction, however these techniques may require a delay while
participants wait for their coins to be mixed.13 In addition, although recent schemes such as
XIM attempt to mitigate this through probabilistic means, most existing Bitcoin mixers rely on a
trusted party.7 In the case that the trusted party is compromised, the anonymity of the transaction
is also compromised.

Some coins such as Dash (originally called Darkcoin),8 attempt to negate this by using a
larger number of trusted mixers (called “masternodes”) but this number is still much smaller than
the users of the coin. In contrast, with a spontaneous ring signature, transactions can be created
by the owner of a given pubkey (this is the spontaneous, or “ad-hoc” property) without relying
on any trusted party, and thus providing for safer, faster, and more reliable anonymity.

1.3. Confidential Transactions (Bitcoin)—Bitcoin itself includes, in the Elements sidechain,
a method of hiding the amounts in transactions, namely Confidential Transactions itself, as
described by Maxwell.14 This could probably be combined with coin mixing, to provide
additional anonymity. However, the downsides to CoinJoin mentioned above would still apply,
namely, parties would need to wait and arrange carefully their mixing, rather than being able
to disguise the sender of a transaction instantly, as in CryptoNote, by creating an ad-hoc ring
signature. Still, this method has the benefit of the trustless coin-generation process of Bitcoin,
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which is desirable, and the advantage over CryptoNote of hidden amounts.22

1.4. Decentralized Anonymous Payment Schemes—Another protocol which achieves anony-
mous transactions is Zerocash.5 Zerocash is a highly anonymous database which may be grafted
onto another currency to provide anonymous transactions. The Zerocash scheme has the downside
that all of the anonymous coins must be pregenerated by a trusted group. If any actor somehow
compromises the group and acquires all of the pieces of the master key used in coin generation,
then they will be able to generate free coins at will, dropping the value of all coins in existence,
and thus ruining the currencies ability to be a store of value. Obviously, it would be risky to graft
Zerocash onto a currency which has a lot of infrastructure depending on it, such as Bitcoin itself.

Note that one of the biggest innovations of Bitcoin,16 was the decentralized distribution model
allowing anyone willing to put their computing power to work to participate in the generation of
the currency. Some of the benefits of this type of proof-of-work include trustless incentives for
securing the network and stronger decentralization (for example, to protect against poison-pill
type attacks which may also affect Zerocash.5 Since Zerocash inherently lacks this mining phase,
and must instead be grafted to another currency which has mining, it is unclear whether these
benefits are enforceable.

Another downside to Zerocash is the large computational cost it requires to generate transac-
tions. A Zerocash transaction proof takes about 3 minutes to generate, and requires a computer
with a significant amount of RAM (although obviously technological advances will reduce this
issue).5 In contrast, using the techniques of this paper, the authors have experimentally generated
many transaction proofs per second using only an older laptop with an i3 processor and a small
amount of RAM.

Finally, due to the complex mathematics behind Zerocash, it is unclear whether Zerocash
allows for anonymous multisignature transactions, in other words, transactions with more than
one signer. These type of transactions are useful for purposes such as two-factor authentication,
escrow, and joint bank accounts. The methods of this paper allow for anonymous multisignature
with no additional modification.

1.5. Ring Confidential Transactions Overview—In this paper, we describe a modification to
the Monero protocol, a proof-of-work cryptocurrency extending the original CryptoNote protocol.
The modification is based on Confidential Transactions which are used on the Elements side-chain
in Bitcoin, except it allows for their use in ring signatures.14 Therefore, the modification is
given the obvious name of Ring Confidential Transactions (Ring CT) for Monero. The authors
note that a similar protocol was proposed by Fromknecht a month after the original blockchain-
timestamped drafts of this paper were publicized to the Monero and Bitcoin Community.9, 17

The Ring CT protocol is a currency which (1) requires no trusted setup, (2) hides the
identity of the recipient of a transaction, (3) hides the identity of the originator of a transaction,
and (4) hides the amount in a given transaction. The new property (4), which does not exist
in CryptoNote,22 negates most of the downsides to ring signature based currencies noted in
Section 1.1.

Properties (1) and (2) are accomplished in the same manner as in CryptoNote.22 Namely, a
strongly-decentralized (i.e., with no privileged party) hash-based “mining” process provides the
trustless coin generation, and one-time keys, created as in CryptoNote,22 hide the identity of the
recipient of a transaction.

Property (4) will be the result of then applying Greg Maxwell’s “Confidential Transactions”
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protocol (which consists of signing a Pedersen Commitment to an amount rather than a plaintext
amount),14 however in order to also obtain property (3) while retaining the trustless aspect, some
care must be taken. In CryptoNote,22 hiding the originator of a transaction is accomplished
by signing the transaction with a ring signature, rather than an ordinary digital signature. In
CryptoNote,22 each public key in the ring signature must contain the same amount of coin,
corresponding to the amount in the output. If the amounts are therefore naively hidden, it is
impossible to guarantee that the inputs to the signature have the same amount of coins as the
outputs. We solve this by ring-signing on the actual Pedersen Commitments. This ring signature
on Pedersen Commitments is discussed in Section 3.2.

Creating a ring signature on the commitments is not enough, since the output commitments
could be changed, creating another signature which will also verify, thus allowing the input
coins to be spent twice. (We explain this in more detail in Section 4.) To deal with this issue,
a generalization of the signatures of Liu et al. is created,11 which allows a user to sign with a
vector of keys, rather than a single key. The point of using a key-vector is so that a user can prove
they simultaneously have knowledge of both the secret key of the input address and the secret
key of the input commitment. (Contrast this with signing two distinct ring signatures: one for
the commitment, and one for the input key. This would prove that you know keys for an amount
and an address, but not necessarily link the two.) This generalization is called a Multilayered
Linkable Spontaneous Anonymous Group signature (MLSAG) and will be discussed in Section 2.
The ring signature on the Pedersen Commitments is placed in the bottom row of the MLSAG,
and the overall protocol would not be possible without the multilayering.

The final part of the Ring CT protocol deals with proving the output of a given transaction
lies within an acceptable range of positive values. As noted by Maxwell,14 if this “range proof”
is not performed, a user might be able to create a transaction outputting a negative value. Since
amounts are encoded as elements in a very large finite field, this would result in the creation of
free money as the (small) negative value becomes a (large) positive value modulo the field order.
These “range-proofs” are described in Section 3.3 and an example construction is given in an
appendix.

In summary, this paper takes a number of previously known cryptographic techniques and
generalizes and combines them in a novel way to result in a currency with similar anonymity
properties to Zerocash,5 but retaining the trustless coin-generation inherent in Bitcoin.

2. Multilayered Linkable Spontaneous Anonymous Group Signatures

In this section, we define the Multilayered Linkable Spontaneous Anonymous Group signatures
(MLSAG) used by the Ring CT protocol. Note that we define these as a general signature, and
not necessarily in their use case for Ring Confidential Transactions. An MLSAG is essentially
similar to the LSAG’s described by Liu et al. but rather than having a ring signature on a set
of n keys,11 instead, an MLSAG is a ring signature on a set of n key-vectors.1 Recall that an
LSAG scheme is a triple of algorithms (GEN,SIGN,V ER) consisting of a key-generation phase,
a signature phase, and a verification phase. The signature phase should produce a single-signer
signature on a set of n≥ 2 public keys in such a way that it is provably difficult to tell which key
belongs to the actual signer, and in such a way that if the signer signs twice, then this will be
noticed.
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Definition 1. A key-vector is just a collection y = (y1, ...,yr) of public keys with corresponding
private keys x = (x1, ...,xr).

2.1. LWW Signatures vs. FS Signatures—The ring signatures used in Monero and the
original CryptoNote protocol are derived from the traceable ring signatures of Fujisaki and
Suzuki.10 The CryptoNote ring signatures come with a “key-image” which means that a signer
can only sign one ring on the block-chain with a given public and private key pair or else their
transaction will be marked as invalid.22 Because of this, one-time keys are used in CryptoNote,
which further helps anonymity.

Adam Back noticed that the Linkable Spontaneous Anonymous Group (LSAG) signatures of
Liu can be modified to give a more efficient linkable ring signature producing the same effect as
the Fujisaki ring signatures.4, 11, 10 This modification reduces the storage cost on the blockchain
essentially in half.

First we recall (almost verbatim) the modification given by Back:4

GEN: Let G be the basepoint of cyclic group where the discrete logarithm assumption is
assumed to hold (Monero currently uses Ed25519).6 Find a number of public keys Pi, i= 0,1, ...,n
and a secret index j ∈ {0,1, ...,n} such that xG=Pj where G is the base-point and x is the signer’s
spend key. Let I = xHp (Pj) be the key image corresponding to Pj where Hp is a cryptographically
secure hash function returning a point whose logarithm with respect to the base-point G is
unknown.

SIGN: Let m be a given message to sign (in practice, m is a sha512 has of an arbitrary string.
Let α,si, i 6= j, i ∈ {1, ...,n} be random values in Zq (the Ed25519 base field).

Compute
L j = αG

R j = αHp (Pj)

c j+1 = Hs (m,L j,R j)

where Hs is a cryptographic hash function returning a value in Zq. Now, working successively in
j modulo n, define

L j+1 = s j+1G+ c j+1Pj+1

R j+1 = s j+1Hp
(
Pj+1

)
+ c j+1 · I

c j+2 = Hs
(
m, L j+1, R j+1

)
· · ·

L j−1 = s j−1G+ c j−1Pj−1

R j−1 = s j−1Hp
(
Pj−1

)
+ c j−1 · I

c j = Hs
(
m,L j−1, R j−1

)
so that c1, ...,cn are defined.

Let s j = α− c j · x j mod l, (l being the Ed25519 curve order) hence α = s j + c jx j mod l so
that

L j = αG = s jG+ c jx jG = s jG+ c jPj
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R j = αHp (Pj) = s jHp (Pj)+ c jI

and
c j+1 = Hs (m, L j, R j)

and thus, given a single ci value, the message m, the Pj values, the key image I, and all the s j

values, then all the other ck, k 6= i can be recovered by an observer. The signature therefore
becomes:

σ = (I,c1,s1, ...,sn)

which represents a space savings over CryptoNote,22 where the ring signature would instead look
like:

σ = (I,c1, ...,cn,s1, ...,sn)

VER: Verification proceeds as follows. An observer computes Li,Ri, and ci for all i and
checks that cn+1 = c1. Then the verifier checks that

ci+1 = Hs (m,Li,Ri)

for all i mod n
LINK: Signatures with duplicate key images I are rejected.

2.1.1 Back signatures vs LWW signatures

The very slight difference between the above signature of Back and that of Liu et al. is in the key
image.4, 11 In the scheme described by Liu, I is defined by the equation

I = x jHp(P1,P2, ...,Pn).

In other words, that scheme proves that a signer can only sign once with respect to a given set of
keys (although they could sign with the same key in many different sets of keys, each having
different hashes). In the above scheme of Back,4 the key image is

I = x jHp(Pj)

which enforces that a signer can only sign with a key once, without their signature being rejected
in the LINK phase of the algorithm. This modification, which is similar, but more efficient to
the one made by Fujisaki and Suzuki,10 is more suited for digital currency use, since it prevents
double-spending of the value stored in a given key, and also links a signer with their key-image,
rather than the group of signers with a key-image. Note that proofs of unforgeability, anonymity,
and linkability hold for the above protocol which are only insignificant modifications to the
proofs given by Liu.11 We will give a more general version of these proofs for the MLSAGs.

2.2. MLSAG Signature Scheme—An MLSAG signature scheme is a tuple of algorithms
(GEN, SIGN, V ER, LINK):
• GEN: A Probabilistic Polynomial Time (PPT) algorithm which takes as input a security

parameter k and outputs a secret key-vector x = (x1, ...,xm) and corresponding public
key-vector P = (P1, ...,Pm) with each (xi,Pi) at security level k.
• SIGN: A PPT algorithm which takes as inputs a security parameter k, a message m, a secret
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key-vector x, a secret index π , a set of public key-vectors P1, ...,xG = Pπ , ...,Pn,n ≥ 2
(this set of public key-vectors is called the key-matrix of the signature), and outputs a
signature σ .
• VER: A polynomial time algorithm which takes as inputs a security parameter k, a key

matrix L, a message m, and a signature σ on L,m, and outputs true or false, depending
on whether the signature verifies or not. For completeness, the MLSAG scheme must
satisfy VER(SIGN(m,L,x),m,L)=true with overwhelming probability at security level k.
• LINK: A polynomial time algorithm which takes as inputs two signatures σ1 and σ2 and

outputs a bit 0 if they are linked, and 1 if they are not linked.
We will say that the signature is “valid” in a given setting (e.g. a blockchain) if it passes

phase VER of the above protocol, and additionaly passes phase LINK of the above protocol as
σ1 with σ2 being any previous MLSAG signature in the given setting.

2.3. MLSAG Security Model—An MLSAG will satisfy the following three properties of
Unforgeability, Linkability, and Signer Ambiguity which are very similar to the definitions given
by Liu et al.11

Definition 2. (Unforgeability) An MLSAG signature scheme is unforgeable if for any proba-
bilistic polynomial time (PPT) algorithmA with signing oracle SO producing valid signatures,
given a list L of n public key vectors chosen byA out of those available in a given setting (such
as a blockchain), then A can only with negligible probability produce a valid signature, when A
does not know any of the corresponding private key vectors.

Definition 3. (Linkability) Let L be the set of all public key-vectors in a given setting (e.g. on a
given blockchain) at security level k. Let L′ be the set of all pairs of key-vectors y,y′ consisting
of keys in L, and such that y,y′ have at least one key in common. Set M to be the set of all
messages (in Monero, a message m consists of the sha512 hash of an arbitrary string of bytes, so
the message space could be considered the set of all byte strings hashable in polynomial time).
Define Σ to be the set of all MLSAG signatures σ(x,L,m) on L signed with respect to private
key-vector x, with key-matrix L and on message m. An MLSAG signature scheme is said to be
key-image linkable, if there exists a PPT algorithm B : Σ→{0,1} such that for all secret keys
x,x′, key-matrices L1,L2, and messages m,m′,

Pr(B(σ(x,L1,m),σ ′(x′,L2,m
′) : (x,x′) ∈ L′) = 1))> 1−Q(k)

Pr(B(σ(x,L1,m),σ ′(x′,L2,m
′) : (x,x′) 6∈ L′) = 0))> 1−Q(k)

for some polynomial in k.

Definition 4. (Signer Ambiguity) An MLSAG signature scheme is said to be signer-ambiguous
if for any PPT algorithmA, taking as inputs a message m, a set Dt of t private keys, any verifying
signature σ signed at a randomly chosen column π on any list of key-vectors L = (y1, ...,yn),
then, assuming yπ does not contain any element with private key in Dt , the probability of A
guessing the secret key is less than 1

n−t +
1

Q(k) , i.e.,

Pr[A(m,L,Dt ,σ)→ π]<
1

n− t
+

1
Q(k)

where Q is some polynomial function taking as input the security parameter k.
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We now describe an instantiation of an MLSAG signature. Proofs that this signature satisfies
the above definitions of Unforgeability, Linkability, and Signer Ambiguity are given in Appendix
A.

2.4. MLSAG Description—For the Ring CT protocol, which will be described in Section 4,
we require a generalization of the Back LSAG signatures described in the previous section which
allows for key-vectors (Definition 1) rather than just keys.

Suppose that each potential signer of a key-matrix L containing n members has exactly m

keys L=
{

P j
i

}i=1,...,n

j=1,...,m
. The intent of the MLSAG ring signature is the following:

• To prove that one of the n signers knows the secret keys to their entire key vector.
• To enforce that if the signer uses any one of their m signing keys in another MLSAG

signature, then the two rings are linked, and the second such MLSAG signature (ordered
by blockchain height) is discarded.

The reason it is desirable to have a signature with vectors of keys P = P1, ...,Pm is because,
since we are going to replace plaintext amounts with Pedersen Commitments to amounts, we
need a signature which shows that a signer is using the correct Pedersen Commitment which has
been sent to their address. In other words, one of the public keys in the above signature is going
to be a Pedersen Commitment to zero. This will be explained further in Section 3.2.

The algorithm proceeds as follows: Let m be a given message. We again work in a cyclic
group where the discrete logarithm problem is assumed to hold at security level k, and which
has basepoint G. Let π be a secret index corresponding to the signer of the generalized ring.
Suppose the signer owns secret / public key pairs (x j

π ,P
j

π) for j = 1, ...,m and let I j = x jHp

(
P j

π

)
be the key image corresponding to Pj, where Hp is a cryptographic hash function returning a
point whose logarithm (with respect to G) is unknown. Finally, for j = 1, ...,m, i = 1, ..., π̂, ...n
(where π̂ means omit the index π) let s j

i be some random scalars (elements of Zq). Now, in a
manner analogous to Section 2.1, define

L j
π = α

j
πG

R j
π = α

j
πHp

(
P j

π

)
for random scalars α

j
π and j = 1, ...,m. Now, again analogously to Section 2.1, set:

cπ+1 = Hs
(
m,L1

π ,R
1
π , ...,L

m
π ,R

m
π

)
.

where Hs is a cryptographic hash function returning a scalar, and

L j
π+1 = s j

π+1G+ cπ+1P j
π+1

R j
π+1 = s j

π+1Hp

(
P j

π+1

)
+ cπ+1I j

and repeat this, incrementing i modulo n until we arrive at

L j
π−1 = s j

i−1G+ ci−1P j
i−1

R j
π−1 = s j

i−1Hp

(
P j

i−1

)
+ ci−1 · I j
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cπ = Hs
(
m,L1

π−1,R
1
π−1, ...,L

m
π−1,R

m
π−1
)
.

Finally, solve for each s j
π using α j = s j

π + cπx j mod `. The signature is then given as(
I1, ..., Im,c1,s1

1, ...,s
m
1 ,s

1
2, ...,s

m
2 , ...,s

1
n, ...,s

m
n
)
, so the complexity is O(m(n+1)) . Verification

proceeds by regenerating all the L j
i ,R

j
i starting from i = 1 as in Section 2.1 (which is the special

case that m = 1) and verifying the hash cn+1 = c1. If these are being used in a blockchain setting
such as Monero, signatures with key images I j which have already appeared are then rejected.
One can easily show, in a manner similar to Liu et al.:11

• The probability of a signer generating a valid signature without knowing all “m” private
keys belonging to their key vector for index π is negligible.
• The probability of a signer not signing for any key of index π is negligible. (In other

words, the key images in the signature necessarily all come from index π .)
• If a signer signs two rings using at least one of the same public keys, then the two rings

are linked.
We expand on these points in Appendix A with security proofs that the MLSAG signatures

satisfy Unforgeability, Signer Ambiguity, and Linkability.

3. Background on Confidential Transactions

3.1. Confidential Transactions in Bitcoin—Maxwell describes Confidential Transactions
which are a way to send Bitcoin transactions with the amounts hidden.14 The basic idea is to use
a Pedersen Commitment and the method is well described in the cited source. In this paper we
make a slight modification to the Confidential Transactions machinery in that rather than taking
the commitments to sum to zero, we instead sign for the commitment, to prove we know a private
key. This is described in more detail in the next section.

3.2. Modification for Ring Signatures—Let G be the basepoint of a given cyclic group which
satisfies the discrete logarithm assumption. Let H be a point in 〈G〉 whose discrete logarithm
with respect to G is unknown. (For example, Maxwell takes the cryptographic hash of G and
uses this as an x-coordinate for a point on an elliptic curve, from which they recover H.)14

Under the discrete logarithm assumption on Ed25519, the probability of an adversary discov-
ering logGH is negligible. Define C (a,x) = xG+aH, the commitment to the value a with mask
x. Note that as long as logGH is unknown, and if a 6= 0, then logGC (a,x) is unknown. On the
other hand, if a = 0, then logGC (a,x) = x, so it is possible to sign with keypair (x,C (0,x)) .

Maxwell’s scheme includes input commitments Cin,i, output commitments Cout, j, correspond-
ing, respectively, to amounts going into and out of a given transaction,14 and the network verifies
that

∑
i

Cin,i = ∑
j

Cout, j.

However, this does not suffice in Monero: since a given transaction contains multiple possible
inputs Pi, i = 1, ...,n, only one of which belong to the sender (see Section 4.4 of CryptoNote),22

then if we are able to check the above equality, it must be possible for the network to see which
Pi belongs to the sender of the transaction. This is undesirable, since it removes the anonymity
provided by the ring signatures. Thus instead, commitments for the inputs and outputs are created
as follows (suppose first that there is only one input)
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Cin = xcG+aH

Cout,1 = y1G+b1H

Cout,2 = y2G+b2H

such that xc = y1 + y2 + z, xc− y1− y2 = z, yi are mask values, z > 0 and a = b1 +b2. Here xc

is a special private key the “amount key” known only to the sender, and to the person who sent
them their coins, and must be different than their usual private key. In this case,

Cin−
2

∑
i=1

Cout,i

= xcG+aH− y1G−b1H− y2G−b2H

= zG.

Thus, the above summation becomes a commitment to 0, with private key z, and public key zG,
rather than an actual equation summing to zero. Note that z is not computable to the originator of
xc’s coins, unless they know both of the y1,y2, but even this can be simply mitigated by including
an additional change address (the usual case is that the second commitment, with y2 as mask, is
sent to yourself as change).

Since it is undesirable to show which input belongs to the sender, a ring signature consisting
of all the commitment equations is created on the ring:{

C1,in−∑
j

C j,out , ...,Cs,in−∑
j

C j,out , ...,Cn,in−∑
j

C j,out

}
.

This is a ring which can be signed since we know one of the private keys (namely z+ x′ with z as
above and x′G = Ps). A verifying signature on this ring proves that the amount into a transaction
equals the amount going out of a transaction, however it does not provide linkability or prevent
double-spending (since you could change C j,out , resulting in a different key-image). Thus, instead
of producing a signature only on this ring, the above ring will be used as a row in an MLSAG
signature, which also includes the addresses corresponding to the input commitments Ci,in. Since
the addresses correspond to public keys, which cannot be changed, and since they will be in the
same column of the MLSAG, the addresses provide linkability. The full protocol is described in
Section 4.1.

3.3. Range Proofs—As noted by Maxwell,14 when replacing plaintext amounts with Peder-
sen Commitments, one must additionally prove that each output lies in a certain range of positive
values. The reason for this, is that since the underlying mathematics for the commitments occurs
over a finite field, a small negative amount is in the same equivalence class, modulo the field order,
as a very large positive amount. Thus, a user could create a transaction to themselves where the
inputs equal the outputs, and the outputs include a small negative (large positive) value, resulting
in the creation of free coins. Thus it is necessary to include a “range proof” with each output,
proving that each value lies in a given positive range. In this subsection, we recall how this is
done by Maxwell.14 Note that this range proof construction also uses a type of ring-signature,
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which do not need linkability. These ring signatures are used for a completely different purpose
than the MLSAG’s (namely the range proof ring signatures are used to prove a single bit is in
the set {0,1} without giving away which number it actually is) and have no interaction with the
MLSAG part of the Ring CT Protocol.

Given that there are 264 atomic units of Monero currency, one could choose [0,264] to be an
acceptable range for the range proof, or alternatively, with the objective of having smaller range
proofs, one could use a floating point implementation which would include an exponent and a
mantissa in [0,2n] for some smaller value of n.

The standard method of constructing a range proof, described by Maxwell is to first write the
output amount in it’s n-ary expansion.14 For example, in binary, an output amount b would be
represented as:

b = b0 ·20 +b1 ·21 +b2 ·22 + · · ·+br ·2r

with bi ∈ {0,1}. In this case, a range proof is constructed for b by actually proving, for each
i ∈ {0, ...,r} that bi ∈ {0,1}, thus proving a has an expansion such as the above.

To do this, one writes the commitments, described in the previous section, as C = aG+bH
where a is a masking secret key, then one picks a0,a1, ...,ar with sum ∑

t
i=0 ai = a and proves for

each i that
Ci = aiG+bi2iH

is a commitment to either 0 or to 2i, without revealing explicitly which one it is. This is easily
accomplished by providing a ring signature on the ring

{aiG+bi2iH,aiG+bi2iH−2iH}.

If bi /∈ {0,1}, then neither of the keys in the above ring will be a commitment to zero, and the ring
will not be signable. Note that this simple ring signature need not be linkable, and can therefore
use the more well-known signature technique of Abe et al. rather than Liu et al.2, 11 Finally, the
prover provides all Ci and the verifier checks that ∑iCi =C. Various techniques can then be used
to easily aggregate these signatures for each bit in order to achieve additional space savings (see
for example Maxwell and Poelstra).15 One can further implement blockchain pruning, where,
after a certain number of blocks or at a checkpoint, these range proofs are not stored by nodes
desiring to save additional disk space.

4. Ring CT For Monero Protocol

In this section, we describe the full construction of the Ring CT protocol which combines the
MLSAG’s of Section 2, the ring commitment scheme of Section 3.2, and the range proofs of
Section 3.3.

4.1. Tag-Linkable Ring-CT with Multiple Inputs and One-time Keys—

4.1.1 Transaction Generation:

• Let
{(

P1
π ,C

1
π

)
, ...,(Pm

π ,Cm
π )
}

be a collection of addresses / commitments with correspond-
ing secret keys x j, j = 1, ...,m. Each pair (Pi,Ci), with i ∈ {1, ...,m}, corresponds to
an input public key Pi and commitment Ci in a given group which satisfies the discrete
logarithm assumption.
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• Find q+1 collections
{(

P1
i ,C

1
i
)
, ...,(Pm

i ,Cm
i )
}
, i = 1, ...,q+1 which are not already tag

linked in the sense of Fujisaki and Suzuki (page 6).10 These will serve as additional
inputs to the MLSAG to mask the actual input column.
• Decide on a set of output addresses (Qi,Ci,out) such that ∑

m
j=1C j

π −∑iCi,out is a commit-
ment to zero.
• Let

R :=

{{(
P1

1 ,C
1
1
)
, ...,(Pm

1 ,Cm
1 ) ,

(
m

∑
j=1

C j
1−∑

i
Ci,out

)}
,

...,{(
P1

q+1,C
1
q+1
)
, ...,

(
Pm

q+1,C
m
q+1
)
,

(
m

∑
j=1

C j
q+1−∑

i
Ci,out

)}}
.

be the key matrix which we wish to sign. Note that the last column is a Ring-CT ring in
the sense of 3.2.
• Compute the MLSAG signature Σ on R with respect to message m which is a crypto-

graphically secure hash of the set of (Qi,Ci,out)

• Compute range proofs, as in Section 3.3, for each Ci,out .
In this case, by Theorem 6, P j

π , j = 1, ...,m cannot be the signer of any additional non-linked Ring
Signatures in the given superset P of all such pairs P = {(P,C)} after signing Σ. Furthermore,
by the property of Signer-ambiguity, which holds for the MLSAG by Theorem 8, the signer is
anonymous to a degree proportional with the number of columns in their chosen key-matrix.

4.1.2 Transaction Verification

Given a Ring-CT transaction generated as above, the transaction can be verified by simply
verifying each of the signatures
• Verify the MLSAG part of the transaction with respect to the given message consisting of

outputs and commitments (Qi,Ci,out) including rejecting the transaction as duplicate if
the key-image part of the signature appears as part of a previously received transaction.
• Verify each of the range proofs for the Ci,out .

By Theorems 6 and 7, the likelihood of a double-spend or fake transaction being verified is
negligible with respect to the chosen security parameter.

4.1.3 Storage Cost

Note that the size of the signature Σ on R according to definition 4.1 is actually smaller, for m > 1,
than a current CryptoNote ring signature based transaction which includes multiple inputs.22

This is because of the size improvements, given by Liu et al. to each column.11 Note also, it is
probably not necessary to include the key-image of the commitment entry of the above signature.
Further size optimizations are likely possible.

4.2. Conversion from Visible Denominations to Commitments—As Monero currently uses
blockchain visible scalars to represent amounts, it is important that there is a way to convert from
visible amounts to commitments while preserving anonymity. In fact, this is not difficult. Given
a pair (P,a) where P is a public key and a represents an amount, this may be used as the input to
a transaction as (P,aH), and it must be checked by the verifier that the input amount a multiplied
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by the masking point H, indeed gives aH. Thus at the first step, the input amounts will not be
hidden, but the outputs of this transaction can be hidden, and all the necessary relations outlined
in Section 4 hold. Note that a range proof is not necessary for such an input. The obvious benefit
of this method of converting from visible amounts to commitments is that the amount of coins
generated by the mining process is trustlessly verifiable. This is an advantage of the Ring CT
protocol over payment schemes such as Zerocash which rely on a trusted setup phase.5

4.3. Transaction Fees—As Monero is strongly decentralized (i.e. proof-of-work) it is
necessary to pay miners a transaction fee for each transaction. This helps with the network
security to prevent blockchain bloat. These fees must be paid “unmasked” i.e. just as bH, rather
than xG+bH, and for some standardized amount b so that the miner can verify that b ·H = bH
and thus there is enough money for the transaction fee while still having the equations in terms
of H so the necessary relations of Section 4 hold.

4.4. Ring Multisignature—Note that a simple, non-interactive version of a t of m of n ring-
multisignature can be done with the MLSAG signatures in a Blockchain setting. (We give an
interactive version with better anonymity properties in Noether et al.21) This allows a group of
m participants to create a multisignature such that t out of m must sign for the signature to be
accepted as valid, and in addition, it is signer ambiguous which m keys are the participants out of
the n keys.
• The n participants in the multisignature create a shared secret xe and public key Pe and

share multisig key-images
I j = xeHp(Pe|Pj)

with Pj the public key of the participant.
• Any participant of the multisignature selects n−m additional public keys on the block-

chain and creates an MLSAG signature with the first row the total n keys, and the second
row having each entry the shared key Pe.
• Each signer transmitting part of the multisignature provides the initial I j, j = 1, ...,m so

that the signature is accepted after t verifying signatures have been transmitted on the
blockchain, each corresponding to one of the key images I j.

An expanded writeup of the ring-multisignature is in the works.

5. Conclusion

The Ring Confidential Transactions protocol provides a strongly decentralized cryptocurrency,
having no priviledged party, and with provable security estimates regarding the hiding of amounts,
origins and destinations. In addition, coin generation in the Ring Confidential Transactions
protocol is trustless and verifiably secure. These properties are a necessity of any cash-like
cryptocurrency such as Monero.
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Appendix A: Security Proofs

1.1. MLSAG Unforgeability—This follows similarly to Theorem 1 of Liu et al.11 We work
in a cyclic group with basepoint G and satisfying the discrete logarithm assumption at security
level k. Let Hs and Hp random oracles returning a scalar and group element respectively, and
SO be a signing oracle which returns valid MLSAG signatures. Assume there is a probabilistic
polynomial time (PPT) adversary A with the ability to forge an MLSAG (i.e., create a verifying
MLSAG without knowing the signing key-vector) from a list of key vectorsL with non-negligible
probability

Pr (A(L)→ (m,σ) : V ER(L,m,σ) = True)>
1

Q1 (k)

where Q1 is a polynomial inputting a security parameter k and where (m,σ) is not one of the
signatures returned by SO. Assume thatA makes no more than qH +nqS (with n the number of
keys in L) queries to the signing oracles Hs,Hp and SO respectively. The oracles Hs and Hp are
assumed independent and random and are consistent given duplicate queries. The signing oracle
SO is also allowed to query Hs and Hp. Given A, we will show it is possible to create a PPT
adversaryM which uses A to find the discrete logarithm of one of the keys in L.

If L is a set of key vectors {y1, ...,yn} each of size r, (i.e. yi =
(
yi

1, ...,y
i
r
)

with y1, ...,yr public
keys) then a forged signature

σ = (c1,s1, ...,sn,y0)

produced by A must satisfy

ci+1 = Hs
(
m,L1

i ,R
1
i , ...,L

m
i ,R

m
i
)

where the i are taken mod n, and the L j
i , R j

i are defined as in Section 2.4. The new adversaryM
may call A to forge signatures a polynomial number of times and will record each Turing script
T whether or not the forgery is successful.

Lemma 5. Lemma 1 (from Liu et al.11) LetM invoke A to obtain a transcript T . If T is
successful, thenM rewinds T to a header H and re-simulates A to obtain transcript T ′ . If
Pr (T succeeds) = ε , then Pr (T ′ succeeds) = ε.

Theorem 6. Using the random oracle model, the probability that an adversary A forges a
verifying MLSAG signature is negligible under the discrete logarithm assumption.

Proof. We follow the notation introduced above. Similarly to Theorem 1 of Liu et al.,11 since the
probability of guessing the output of a random oracle is negligible, therefore, for each successful
forgeryA completes with transcript T , there are mT queries to Hs matching the n queries used
to verify the signature. Thus let Xi1 , ...,Xim denote these queries used in verification for the ith

such forgery and let π be the index corresponding to the last such verification query for a given
forgery

Xim = Hs
(
m,L1

π−1,R
1
π−1, ...,L

mT
π−1,R

mT
π−1

)
.
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(Intuitively, π corresponds to what would be the secret index of the forged signature, since it
corresponds to the last call to the random oracle for the given signature).

An attempted forgery σ produced by A is an (`,π)-forgery if i1 = ` and π is as above (so
this forgery corresponds to queries ` through `+π). By assumption, there exists a pair (`,π)
such that the probability that the corresponding transcript T gives a successful forgery, ε`,π (T ),
satisfies

ε`,π ≥
1

mT (qH +mT qS)
· 1

Q1 (k)
≥ 1

n(qH +nqS)
· 1

Q1 (k)
.

Now, rewinding T to just before the `th query, and again attempting a forgery on the same set of
keys, (and letting Hs compute new coin flips for all of it’s succeeding queries) then by Lemma 5,
it follows that the probability that T ′ is also a successful forgery satisfies

ε`,π

(
T ′
)
≥ 1

n(qH +nqS)
· 1

Q1 (k)
.

Therefore, the probability that both T and T ′ correspond to verifying forgeries σ and σ ′ is
non-negligible:

εl,π
(
T and T ′

)
≥
(
εl,π (T )

)2
.

As new coin-flips have been computed for the random oracle outputs of Hs, it follows that
with overwhelming probability, that for each j we have s j

π 6= s′ jπ and cπ 6= c′π . Thus we can solve
for any private key of index π:

x j
π =

s′ jπ − s j
π

cπ − c′π
mod q

which contradicts the discrete logarithm assumption.
1.2. MLSAG Linkability—

Theorem 7. (Key-Image Linkability) The probability that a PPT adversary A can create two
verifying (and unlinked in the given setting) signatures σ ,σ ′ signed with respect to key vectors y
and y′respectively such that there exists a public key y in both y and y′ is negligible.

Proof. Suppose to the contrary thatA has created two verifying signatures σ and σ ′ both signed
with respect to key vectors y and y′ respectively such that there exists a public key y in both y
and y′. Let y appear as element j of y, and as element j′ element of y′. By Theorem 6, it holds
with overwhelming probability that there exists indices π and π ′ for the public keys in σ and σ ′

respectively such that
L j

π = s j
πG+ cπy j

π

R j
π = s j

πHp

(
y j

π

)
+ cπ I j

and

L j′
π ′ = s j′

π ′G+ cπ ′y
j′

π ′

R j′

π ′ = s j′

π ′Hp

(
y j′

π ′

)
+ cπ ′I j′

with
logGL j

π = log
Hp

(
y j

π

)R j
π
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and
logGL j′

π ′ = log
Hp

(
y j′

π′
)R j′

π ′

Letting x denote the private key of y, y = xG, then after solving the above for I j and I j′ it follows

that I j = xHp

(
y j

π

)
= xHp (y) and similarly I j′ = xHp (y) . Thus the two signatures include I j = I j′ ,

and therefore, since duplicate key images are rejected, one of them must not verify.
1.3. MLSAG Anonymity—To prove the anonymity of the above protocol in the random

oracle model, let Hs,Hp be random oracles modeling discrete hash functions returning, as in
the previous proofs, a scalar and group element. Let A be an adversary against anonymity. I
construct an adversaryM against the Decisional Diffie Helman (DDH) assumption as follows.
The DDH assumption says that given a tuple (G,aG,bG,γG), the probability of determining
whether γG = abG is negligible.

Theorem 8. Ring CT protocol is signer-ambiguous under the Decisional Diffie-Helman assump-
tion.

Proof. (Similar proof to Theorem 2 of Liu et al.)11 Assume that the Decisional Diffie-Helman
problem is hard in the cyclic group generated by G and suppose there exists a PPT adversaryA
against signer ambiguity. Thus given a list L of n public key-vectors of length m, a set of t private
keys Dt = {x1, ...,xt}, a valid signature σ on L signed by a user with respect to a key-vector
y such that the corresponding private key-vector x = (xπ

1 , ...,x
π
m) satisfies xπ

j /∈Dt , then A can
decide π with probability

Pr (A→ π)>
1

n− t
+

1
Q(k)

for some polynomial Q(k). We construct a PPT adversaryM which takes as inputs a tuple
(G,aG,bG,ciG) where i ∈ {0,1} is randomly chosen (and not a priori known toM), c1 = ab,
and c0 is a random scalar, and outputs i with probability

Pr (M(G,aG,bG,ciG)→ i)≥ 1
2
+

1
Q2 (k)

for some polynomial Q2 (k).
Consider an algorithm SIMNIZKP (similar to the one defined by Fujisaki and Suzuki10)

which takes as input scalars a, c , a private key vector x, a set of public key-vectors yi, i = 1, ...,m,
an index π , and a message m and acts on these as follows:

1. Generate random scalars s1, ...,sm and, a random scalar cπ ← Hs.
2. For j indexing x, set

L1
π = aG

R1
π = cG

and for all other j
L j

π = s j
πG+ cπy j

π

R j
π = s j

πHp

(
y j

π

)
+ cπx jHp

(
y j

π

)
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3. Compute a random output from the random oracle

cπ+1← Hs
(
m,L1

π ,R
1
π , ...,L

m
π ,R

m
π

)
.

4. For each i, working mod m, compute

L j
i = s j

i G+ ciy
j
π

R j
i = s j

i Hp

(
y j

i

)
+ cix jHp

(
y j

π

)
ci+1← Hs

(
m,L1

i ,R
1
i , ...,L

m
i +Rm

i
)
.

and note that at the last step when i = π − 1, then ci+1 is already determined, to maintain
consistency with the random oracle output.

Note that regardless of whether x is the actual private key corresponding to y, due to the fact
that consistency is maintained by the random oracles in subsequent calls, the above signature
verifies. If x is actually the private key-vector of y , then there is no difference between SIMNIZKP
and an actual signature.

Finally, given a tuple (G,aG,bG,ciG) where a,b are randomly selected scalars, with c1 = ab,
c0 a random element, i ∈ {0,1}, M takes the following steps to solve the Decisional Diffie
Helman Problem with non-negligible probability.M grabs a random γ ← Hs from the random
oracle and takes a private / public key-vector pair (x,y), and then computes s such that a = s+ γx.
NowM performs SIMNIZKP with arbitrarily selected key-vectors {yi}i=1,...,n such that y = yπ ,

a→ a, ci→ c some message m, and x→ x.
If it is the case that i = 1, then c = ab, then

logGaG = logbGcG = a

and due to the fact that A is assumed to be able to find π with non-negligible probability, then
there is a non-negligible probability over 1

2 that A returns 1 (upon whichM returns 1). If i = 0,
then A returns 1 only with probability 1

2 , and so for some non-negligible probability over 1
2 ,M

returns the same value asA, and thus solves the Decisional Diffie-Helman problem for randomly
chosen scalars with non-negligible probability over 1

2 , which is a contradiction.

Appendix B: Ring CT Demo Code

In our repositories we have created a simple demonstration in C++, and Python respectively of
the Ring Confidential Transactions protocol outlined in Section 4.1.18, 19
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